
    U th                       d dl mZ d dlmZmZmZmZmZ d dlm	Z	m
Z
 d dlZddlmZ ddlmZ ddlmZmZmZmZmZ dd	lmZmZmZ dd
lmZ ddlmZmZ ddlm Z m!Z! ddl"m#Z#m$Z$ ddl%m&Z& ddl'm(Z( ddl)m*Z* ddgZ+ G d de          Z, G d de          Z- G d d          Z. G d d          Z/ G d d          Z0 G d d          Z1dS )    )annotations)DictListUnionIterableOptional)LiteraloverloadN   )_legacy_response)completion_create_params)	NOT_GIVENBodyQueryHeadersNotGiven)required_argsmaybe_transformasync_maybe_transform)cached_property)SyncAPIResourceAsyncAPIResource)to_streamed_response_wrapper"async_to_streamed_response_wrapper)StreamAsyncStream)make_request_options)
Completion) ChatCompletionStreamOptionsParamCompletionsAsyncCompletionsc                  f   e Zd Zed9d            Zed:d            Zeeeeeeeeeeeeeeeeedddedd;d.            Zeeeeeeeeeeeeeeeeddded/d<d2            Zeeeeeeeeeeeeeeeeddded/d=d5            Z e	dd
gg d6          eeeeeeeeeeeeeeeedddedd>d8            ZdS )?r    returnCompletionsWithRawResponsec                     t          |           S a  
        This property can be used as a prefix for any HTTP method call to return
        the raw response object instead of the parsed content.

        For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
        )r$   selfs    p/var/www/html/mycamper/aliexpress-site/backend/venv/lib/python3.11/site-packages/openai/resources/completions.pywith_raw_responsezCompletions.with_raw_response   s     *$///     CompletionsWithStreamingResponsec                     t          |           S z
        An alternative to `.with_raw_response` that doesn't eagerly read the response body.

        For more information, see https://www.github.com/openai/openai-python#with_streaming_response
        )r,   r'   s    r)   with_streaming_responsez#Completions.with_streaming_response&   s     0555r+   Nbest_ofechofrequency_penalty
logit_biaslogprobs
max_tokensnpresence_penaltyseedstopstreamstream_optionssuffixtemperaturetop_puserextra_headersextra_query
extra_bodytimeoutmodelKUnion[str, Literal['gpt-3.5-turbo-instruct', 'davinci-002', 'babbage-002']]promptCUnion[str, List[str], Iterable[int], Iterable[Iterable[int]], None]r1   Optional[int] | NotGivenr2   Optional[bool] | NotGivenr3   Optional[float] | NotGivenr4   #Optional[Dict[str, int]] | NotGivenr5   r6   r7   r8   r9   r:   0Union[Optional[str], List[str], None] | NotGivenr;   #Optional[Literal[False]] | NotGivenr<   5Optional[ChatCompletionStreamOptionsParam] | NotGivenr=   Optional[str] | NotGivenr>   r?   r@   str | NotGivenrA   Headers | NonerB   Query | NonerC   Body | NonerD   'float | httpx.Timeout | None | NotGivenr   c                   dS u3  
        Creates a completion for the provided prompt and parameters.

        Args:
          model: ID of the model to use. You can use the
              [List models](https://platform.openai.com/docs/api-reference/models/list) API to
              see all of your available models, or see our
              [Model overview](https://platform.openai.com/docs/models) for descriptions of
              them.

          prompt: The prompt(s) to generate completions for, encoded as a string, array of
              strings, array of tokens, or array of token arrays.

              Note that <|endoftext|> is the document separator that the model sees during
              training, so if a prompt is not specified the model will generate as if from the
              beginning of a new document.

          best_of: Generates `best_of` completions server-side and returns the "best" (the one with
              the highest log probability per token). Results cannot be streamed.

              When used with `n`, `best_of` controls the number of candidate completions and
              `n` specifies how many to return – `best_of` must be greater than `n`.

              **Note:** Because this parameter generates many completions, it can quickly
              consume your token quota. Use carefully and ensure that you have reasonable
              settings for `max_tokens` and `stop`.

          echo: Echo back the prompt in addition to the completion

          frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their
              existing frequency in the text so far, decreasing the model's likelihood to
              repeat the same line verbatim.

              [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation)

          logit_bias: Modify the likelihood of specified tokens appearing in the completion.

              Accepts a JSON object that maps tokens (specified by their token ID in the GPT
              tokenizer) to an associated bias value from -100 to 100. You can use this
              [tokenizer tool](/tokenizer?view=bpe) to convert text to token IDs.
              Mathematically, the bias is added to the logits generated by the model prior to
              sampling. The exact effect will vary per model, but values between -1 and 1
              should decrease or increase likelihood of selection; values like -100 or 100
              should result in a ban or exclusive selection of the relevant token.

              As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token
              from being generated.

          logprobs: Include the log probabilities on the `logprobs` most likely output tokens, as
              well the chosen tokens. For example, if `logprobs` is 5, the API will return a
              list of the 5 most likely tokens. The API will always return the `logprob` of
              the sampled token, so there may be up to `logprobs+1` elements in the response.

              The maximum value for `logprobs` is 5.

          max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the
              completion.

              The token count of your prompt plus `max_tokens` cannot exceed the model's
              context length.
              [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
              for counting tokens.

          n: How many completions to generate for each prompt.

              **Note:** Because this parameter generates many completions, it can quickly
              consume your token quota. Use carefully and ensure that you have reasonable
              settings for `max_tokens` and `stop`.

          presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on
              whether they appear in the text so far, increasing the model's likelihood to
              talk about new topics.

              [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation)

          seed: If specified, our system will make a best effort to sample deterministically,
              such that repeated requests with the same `seed` and parameters should return
              the same result.

              Determinism is not guaranteed, and you should refer to the `system_fingerprint`
              response parameter to monitor changes in the backend.

          stop: Not supported with latest reasoning models `o3` and `o4-mini`.

              Up to 4 sequences where the API will stop generating further tokens. The
              returned text will not contain the stop sequence.

          stream: Whether to stream back partial progress. If set, tokens will be sent as
              data-only
              [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
              as they become available, with the stream terminated by a `data: [DONE]`
              message.
              [Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions).

          stream_options: Options for streaming response. Only set this when you set `stream: true`.

          suffix: The suffix that comes after a completion of inserted text.

              This parameter is only supported for `gpt-3.5-turbo-instruct`.

          temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
              make the output more random, while lower values like 0.2 will make it more
              focused and deterministic.

              We generally recommend altering this or `top_p` but not both.

          top_p: An alternative to sampling with temperature, called nucleus sampling, where the
              model considers the results of the tokens with top_p probability mass. So 0.1
              means only the tokens comprising the top 10% probability mass are considered.

              We generally recommend altering this or `temperature` but not both.

          user: A unique identifier representing your end-user, which can help OpenAI to monitor
              and detect abuse.
              [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids).

          extra_headers: Send extra headers

          extra_query: Add additional query parameters to the request

          extra_body: Add additional JSON properties to the request

          timeout: Override the client-level default timeout for this request, in seconds
        N r(   rE   rG   r1   r2   r3   r4   r5   r6   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   rB   rC   rD   s                          r)   createzCompletions.create/   
    r 	r+   r1   r2   r3   r4   r5   r6   r7   r8   r9   r:   r<   r=   r>   r?   r@   rA   rB   rC   rD   Literal[True]Stream[Completion]c                   dS u3  
        Creates a completion for the provided prompt and parameters.

        Args:
          model: ID of the model to use. You can use the
              [List models](https://platform.openai.com/docs/api-reference/models/list) API to
              see all of your available models, or see our
              [Model overview](https://platform.openai.com/docs/models) for descriptions of
              them.

          prompt: The prompt(s) to generate completions for, encoded as a string, array of
              strings, array of tokens, or array of token arrays.

              Note that <|endoftext|> is the document separator that the model sees during
              training, so if a prompt is not specified the model will generate as if from the
              beginning of a new document.

          stream: Whether to stream back partial progress. If set, tokens will be sent as
              data-only
              [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
              as they become available, with the stream terminated by a `data: [DONE]`
              message.
              [Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions).

          best_of: Generates `best_of` completions server-side and returns the "best" (the one with
              the highest log probability per token). Results cannot be streamed.

              When used with `n`, `best_of` controls the number of candidate completions and
              `n` specifies how many to return – `best_of` must be greater than `n`.

              **Note:** Because this parameter generates many completions, it can quickly
              consume your token quota. Use carefully and ensure that you have reasonable
              settings for `max_tokens` and `stop`.

          echo: Echo back the prompt in addition to the completion

          frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their
              existing frequency in the text so far, decreasing the model's likelihood to
              repeat the same line verbatim.

              [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation)

          logit_bias: Modify the likelihood of specified tokens appearing in the completion.

              Accepts a JSON object that maps tokens (specified by their token ID in the GPT
              tokenizer) to an associated bias value from -100 to 100. You can use this
              [tokenizer tool](/tokenizer?view=bpe) to convert text to token IDs.
              Mathematically, the bias is added to the logits generated by the model prior to
              sampling. The exact effect will vary per model, but values between -1 and 1
              should decrease or increase likelihood of selection; values like -100 or 100
              should result in a ban or exclusive selection of the relevant token.

              As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token
              from being generated.

          logprobs: Include the log probabilities on the `logprobs` most likely output tokens, as
              well the chosen tokens. For example, if `logprobs` is 5, the API will return a
              list of the 5 most likely tokens. The API will always return the `logprob` of
              the sampled token, so there may be up to `logprobs+1` elements in the response.

              The maximum value for `logprobs` is 5.

          max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the
              completion.

              The token count of your prompt plus `max_tokens` cannot exceed the model's
              context length.
              [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
              for counting tokens.

          n: How many completions to generate for each prompt.

              **Note:** Because this parameter generates many completions, it can quickly
              consume your token quota. Use carefully and ensure that you have reasonable
              settings for `max_tokens` and `stop`.

          presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on
              whether they appear in the text so far, increasing the model's likelihood to
              talk about new topics.

              [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation)

          seed: If specified, our system will make a best effort to sample deterministically,
              such that repeated requests with the same `seed` and parameters should return
              the same result.

              Determinism is not guaranteed, and you should refer to the `system_fingerprint`
              response parameter to monitor changes in the backend.

          stop: Not supported with latest reasoning models `o3` and `o4-mini`.

              Up to 4 sequences where the API will stop generating further tokens. The
              returned text will not contain the stop sequence.

          stream_options: Options for streaming response. Only set this when you set `stream: true`.

          suffix: The suffix that comes after a completion of inserted text.

              This parameter is only supported for `gpt-3.5-turbo-instruct`.

          temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
              make the output more random, while lower values like 0.2 will make it more
              focused and deterministic.

              We generally recommend altering this or `top_p` but not both.

          top_p: An alternative to sampling with temperature, called nucleus sampling, where the
              model considers the results of the tokens with top_p probability mass. So 0.1
              means only the tokens comprising the top 10% probability mass are considered.

              We generally recommend altering this or `temperature` but not both.

          user: A unique identifier representing your end-user, which can help OpenAI to monitor
              and detect abuse.
              [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids).

          extra_headers: Send extra headers

          extra_query: Add additional query parameters to the request

          extra_body: Add additional JSON properties to the request

          timeout: Override the client-level default timeout for this request, in seconds
        NrX   r(   rE   rG   r;   r1   r2   r3   r4   r5   r6   r7   r8   r9   r:   r<   r=   r>   r?   r@   rA   rB   rC   rD   s                          r)   rZ   zCompletions.create   r[   r+   boolCompletion | Stream[Completion]c                   dS r`   rX   ra   s                          r)   rZ   zCompletions.createe  r[   r+   rE   rG   r;   3Optional[Literal[False]] | Literal[True] | NotGivenc          
     B   |                      dt          i d|d|d|d|d|d|d|d	|d
|	d|
d|d|d|d|d|d|d|d|i|rt          j        nt          j                  t          ||||          t          |pdt          t                             S Nz/completionsrE   rG   r1   r2   r3   r4   r5   r6   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   )rA   rB   rC   rD   F)bodyoptionscast_tor;   
stream_cls)_postr   r   CompletionCreateParamsStreaming"CompletionCreateParamsNonStreamingr   r   r   rY   s                          r)   rZ   zCompletions.create   s]   : zz Uf w D	
 (): !*  !*  '(8 D D f %n f  ";!" U#$ D% * Q(HH-P/ 2 )+Q[el   ?Uj)A  !
 !
 !	
r+   )r#   r$   )r#   r,   .rE   rF   rG   rH   r1   rI   r2   rJ   r3   rK   r4   rL   r5   rI   r6   rI   r7   rI   r8   rK   r9   rI   r:   rM   r;   rN   r<   rO   r=   rP   r>   rK   r?   rK   r@   rQ   rA   rR   rB   rS   rC   rT   rD   rU   r#   r   ).rE   rF   rG   rH   r;   r]   r1   rI   r2   rJ   r3   rK   r4   rL   r5   rI   r6   rI   r7   rI   r8   rK   r9   rI   r:   rM   r<   rO   r=   rP   r>   rK   r?   rK   r@   rQ   rA   rR   rB   rS   rC   rT   rD   rU   r#   r^   ).rE   rF   rG   rH   r;   rb   r1   rI   r2   rJ   r3   rK   r4   rL   r5   rI   r6   rI   r7   rI   r8   rK   r9   rI   r:   rM   r<   rO   r=   rP   r>   rK   r?   rK   r@   rQ   rA   rR   rB   rS   rC   rT   rD   rU   r#   rc   ).rE   rF   rG   rH   r1   rI   r2   rJ   r3   rK   r4   rL   r5   rI   r6   rI   r7   rI   r8   rK   r9   rI   r:   rM   r;   rf   r<   rO   r=   rP   r>   rK   r?   rK   r@   rQ   rA   rR   rB   rS   rC   rT   rD   rU   r#   rc   
__name__
__module____qualname__r   r*   r/   r
   r   rZ   r   rX   r+   r)   r    r       s#       0 0 0 _0 6 6 6 _6  -6*38A:C-6/8&/7@)2AJ6?PY+42;,5( )-$("&;D5X X X X X XXt  -6*38A:C-6/8&/7@)2AJPY+42;,5( )-$("&;D5X X X X X XXt  -6*38A:C-6/8&/7@)2AJPY+42;,5( )-$("&;D5X X X X X XXt ]GX&(E(E(EFF -6*38A:C-6/8&/7@)2AJFOPY+42;,5( )-$("&;D5=
 =
 =
 =
 =
 GF=
 =
 =
r+   c                  f   e Zd Zed9d            Zed:d            Zeeeeeeeeeeeeeeeeedddedd;d.            Zeeeeeeeeeeeeeeeeddded/d<d2            Zeeeeeeeeeeeeeeeeddded/d=d5            Z e	dd
gg d6          eeeeeeeeeeeeeeeedddedd>d8            ZdS )?r!   r#   AsyncCompletionsWithRawResponsec                     t          |           S r&   )rv   r'   s    r)   r*   z"AsyncCompletions.with_raw_responseB  s     /t444r+   %AsyncCompletionsWithStreamingResponsec                     t          |           S r.   )rx   r'   s    r)   r/   z(AsyncCompletions.with_streaming_responseL  s     5T:::r+   Nr0   rE   rF   rG   rH   r1   rI   r2   rJ   r3   rK   r4   rL   r5   r6   r7   r8   r9   r:   rM   r;   rN   r<   rO   r=   rP   r>   r?   r@   rQ   rA   rR   rB   rS   rC   rT   rD   rU   r   c               
   K   dS rW   rX   rY   s                          r)   rZ   zAsyncCompletions.createU        r 	r+   r\   r]   AsyncStream[Completion]c               
   K   dS r`   rX   ra   s                          r)   rZ   zAsyncCompletions.create  r{   r+   rb   $Completion | AsyncStream[Completion]c               
   K   dS r`   rX   ra   s                          r)   rZ   zAsyncCompletions.create  r{   r+   re   rf   c          
     ^  K   |                      dt          i d|d|d|d|d|d|d|d	|d
|	d|
d|d|d|d|d|d|d|d|i|rt          j        nt          j                   d {V t          ||||          t          |pdt          t                              d {V S rh   )rm   r   r   rn   ro   r   r   r   rY   s                          r)   rZ   zAsyncCompletions.create&  s     : ZZ,Uf w D	
 (): !*  !*  '(8 D D f %n f  ";!" U#$ D% * Q(HH-P/       2 )+Q[el   ?U":.A   !
 !
 !
 !
 !
 !
 !
 !
 !	
r+   )r#   rv   )r#   rx   rp   ).rE   rF   rG   rH   r;   r]   r1   rI   r2   rJ   r3   rK   r4   rL   r5   rI   r6   rI   r7   rI   r8   rK   r9   rI   r:   rM   r<   rO   r=   rP   r>   rK   r?   rK   r@   rQ   rA   rR   rB   rS   rC   rT   rD   rU   r#   r|   ).rE   rF   rG   rH   r;   rb   r1   rI   r2   rJ   r3   rK   r4   rL   r5   rI   r6   rI   r7   rI   r8   rK   r9   rI   r:   rM   r<   rO   r=   rP   r>   rK   r?   rK   r@   rQ   rA   rR   rB   rS   rC   rT   rD   rU   r#   r~   ).rE   rF   rG   rH   r1   rI   r2   rJ   r3   rK   r4   rL   r5   rI   r6   rI   r7   rI   r8   rK   r9   rI   r:   rM   r;   rf   r<   rO   r=   rP   r>   rK   r?   rK   r@   rQ   rA   rR   rB   rS   rC   rT   rD   rU   r#   r~   rq   rX   r+   r)   r!   r!   A  s#       5 5 5 _5 ; ; ; _;  -6*38A:C-6/8&/7@)2AJ6?PY+42;,5( )-$("&;D5X X X X X XXt  -6*38A:C-6/8&/7@)2AJPY+42;,5( )-$("&;D5X X X X X XXt  -6*38A:C-6/8&/7@)2AJPY+42;,5( )-$("&;D5X X X X X XXt ]GX&(E(E(EFF -6*38A:C-6/8&/7@)2AJFOPY+42;,5( )-$("&;D5=
 =
 =
 =
 =
 GF=
 =
 =
r+   c                      e Zd ZddZdS )r$   completionsr    r#   Nonec                P    || _         t          j        |j                  | _        d S N)_completionsr   to_raw_response_wrapperrZ   r(   r   s     r)   __init__z#CompletionsWithRawResponse.__init__h  s(    '&>
 
r+   Nr   r    r#   r   rr   rs   rt   r   rX   r+   r)   r$   r$   g  (        
 
 
 
 
 
r+   r$   c                      e Zd ZddZdS )rv   r   r!   r#   r   c                P    || _         t          j        |j                  | _        d S r   )r   r   async_to_raw_response_wrapperrZ   r   s     r)   r   z(AsyncCompletionsWithRawResponse.__init__q  s(    '&D
 
r+   Nr   r!   r#   r   r   rX   r+   r)   rv   rv   p  r   r+   rv   c                      e Zd ZddZdS )r,   r   r    r#   r   c                F    || _         t          |j                  | _        d S r   )r   r   rZ   r   s     r)   r   z)CompletionsWithStreamingResponse.__init__z  s%    '2
 
r+   Nr   r   rX   r+   r)   r,   r,   y  r   r+   r,   c                      e Zd ZddZdS )rx   r   r!   r#   r   c                F    || _         t          |j                  | _        d S r   )r   r   rZ   r   s     r)   r   z.AsyncCompletionsWithStreamingResponse.__init__  s%    '8
 
r+   Nr   r   rX   r+   r)   rx   rx     r   r+   rx   )2
__future__r   typingr   r   r   r   r   typing_extensionsr	   r
   httpx r   typesr   _typesr   r   r   r   r   _utilsr   r   r   _compatr   	_resourcer   r   	_responser   r   
_streamingr   r   _base_clientr   types.completionr   /types.chat.chat_completion_stream_options_paramr   __all__r    r!   r$   rv   r,   rx   rX   r+   r)   <module>r      s   # " " " " " 8 8 8 8 8 8 8 8 8 8 8 8 8 8 / / / / / / / /        , , , , , , > > > > > > > > > > > > > > J J J J J J J J J J % % % % % % 9 9 9 9 9 9 9 9 X X X X X X X X , , , , , , , ,      * ) ) ) ) ) ^ ^ ^ ^ ^ ^,
-c
 c
 c
 c
 c
/ c
 c
 c
Lc
 c
 c
 c
 c
' c
 c
 c
L
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
r+   